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Abstract The dynamics of segmental motions in semicrystalline poly(vinylidene
fluoride) has been studied by means of dielectric and mechanical spectroscopies and
nuclear magnetic resonance method. The relaxation data, obtained from different
techniques, over a wide temperature and frequency range, have been analyzed in
terms of main-chain segmental motion, described by phenomenological Havriliak—
Negami function. The results indicate that the correlations between local confor-
mational transitions in the amorphous phase are intermediate. Good agreement
between the experimental and calculated data offers a contribution to the under-
standing of molecular dynamics in the glassy state of the polymer.

Keywords Polyvinylidene fluoride - Molecular dynamics - o-Relaxation -
Mechanical and dielectric relaxation - Nuclear magnetic resonance

Introduction

The dynamics of molecular motions in systems which do not crystallize, even on
slow cooling, but freeze into a glassy state is as yet not fully understood though
various attempts have been made [1-6]. Glass-forming liquids and polymers are
considered to be complex molecular systems and the structural o-relaxation can not
be described by Debye relaxation function with a single relaxation time. In order to
get an unambiguous quantitative description of the molecular dynamics in these
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complex systems, variable temperature and multifrequency study should be
performed. It is obvious that there is no single spectroscopy or other technique
that can cover the whole dynamical window, which ranges from thousandths of
hertz up to thousand of gigahertz on the frequency scale; therefore, several methods
have to be used and combined to study the dynamic phenomena. Among the
methods to be used there are the quasielastic neutron scattering [6], the mechanical
and dielectric relaxation [7-20], the rheo-dielectric method [21, 22], the nuclear
magnetic resonance (NMR) [9, 23-27] and others. The relaxation phenomena
observed by various techniques are expected to be different projection of the same
structural relaxation mechanism. Furthermore, it should be possible to analyze the
dynamical data, obtained by different methods, using the same model of motion
[6, 28].

The subject of our paper is the poly(vinylidene fluoride) (PVDF) polymer. The
PVDF and its copolymers with trifluoroethylene are important for applications in
electromechanical and pyroelectric devices [29], in biomedical engineering [30]
and recently also in high-density non-volatile memory cells of low writing voltage
[31, 32].

PVDF is a semicrystalline polymer presenting pronounced polymorphic crystal-
line forms. It can crystallize into five possible conformations, three of which are
most frequently occurring [33]. Almost planar zig-zag all-trans (TTTT) chain
conformation of PVDF, packed in an orthorhombic unit cell exhibits ferroelectric
properties—polymorph I (ff). The CF, dipoles are parallel to the orthorhombic
b-axis and the long-range interactions are so strong that the Curie temperature is
located close below the melting point. Non-polar polymorph II () consists of trans—
gauche (TGTG') conformation of chains packed antiparallel in a monoclinic unit
cell, whereas in the crystal form III (y) of PVDF the chains with TTTGTTTG'
conformation are comprised in an orthorhombic polar unit cell. The conditions
under which a specific conformation can be obtained depend strongly on the
processing, thermal or mechanical treatments that the polymer undergoes. The
ferroelectric—paraelectric phase transition is induced by cooperative modification in
the chain conformation from all-trans to TGTG' and TTTGTTTG'.

Despite many experimental and theoretical studies the glass transition still
appears an unresolved problem in condensed matter physics. To describe non-
Debye character of the o-relaxation at temperatures above the glass transition, the
main-chain segmental motion has been accounted for, by employing Havriliak—
Negami (HN) empirical equation, where both a distribution of correlation times in
the system as well as the correlation of motion [34, 35] is assumed. By using HN
formula, both the dielectric and the NMR experiments can be satisfactorily
interpreted. The characteristic relaxation time t(7), obtained from different
methods, exhibits non-Arrhenius temperature behaviour, which has later been
parameterized by Vogel-Tamman-Fulcher law [36-38] or equivalent Williams—
Landel-Ferry equation [7].

The main goal of this work was to examine the molecular dynamics of the PVDF
polymer by means of NMR, dielectric and mechanical relaxation. The character-
ization yields experimental data covering the correlation time widow of ten decades
and therefore allows to avoid erroneous dynamic information.
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Experimental section
Samples

PVDF powder from Nitrogenous Concern, Tarnéw, Poland was used in NMR
experiments, whereas the dielectric and mechanical spectroscopy studies were
performed with radially oriented PVDF film. The film samples, ~ 100 pm thick and
11 mm in diameter, were obtained from PVDF powder by hot-pressing at 450 K
and 600 MPa for 30 min. After hot-pressing the samples were cooled down to room
temperature during ~ 30 min under the pressure and relaxed at room temperature
without pressure for 3-5 days.

To characterize studied materials Differential Scanning Calotymetry (DSC), Wide
Angle X-ray Scattering (WAXS) and NIR Raman spectroscopy were performed.
DSC measurements were collected over a temperature range of 320-440 K on a
Netzsch DSC 200 calorimeter with a scanning rate of 4 and 2 K per minute on
heating and cooling, respectively. The sample, in the form of a powder, was placed in
aluminium pans with pin hold lids. In the PVDF polymer thermogram (Fig. 1), single
peak at 432.8 K related to the melting process is observed. Melting exotherm is
shifted to lower temperatures at cooling process and located at 410 K.

Wide angle X-ray scattering measurements of PVDF powder and films were
performed with a PANalytical X Pert PRO X-ray powder diffraction system and Cu
K, radiation. The film was measured in a transmission mode with films placed
between two Kapton foils. The measurements were done with Cu K, focusing X-ray
mirror system (Cu Ky radiation was suppressed to 0.5% of its original level). The
diffraction pattern was registered using the PIXcel detector. The data were collected
for 20 range from 10° to 50° with a A0 step equal to 0.01° during 16 h and worked
out at the use of special computer program: X’Pert HighScor Plus version 2.0
(2004). Figure 2 shows an example of the X-ray pattern of hot-pressed PVDF film
(the effect of Kapton films was extracted).
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Fig. 1 DSC curve of the PVDF powder measured on heating and cooling the sample
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Fig. 2 Wide-angle X-ray diffraction profile of hot-pressed PVDF film

We found that the degree of crystallinity of hot-pressed film is 51% and that of
the powder is 56%. The amorphous phase of PVDF can be considered as consisting
of statistical distribution of various rotational isomeric states.

To characterize local structure of the polymer at the molecular scale both in the
crystalline and the amorphous phase NIR Raman spectroscopy was used. The
spectra were recorded at room temperature using Bruker IFS 66FRA 106
spectrometer (dipc = 1064 nm, p = 50 mW, Ag,eer = 4 ecm™"). Figure 3 shows
Raman spectra in the fingerprint wavenumber range for PVDF sample in the form of
powder and the hot-pressed film. To characterize the phase content we used the
assignment of Raman bands of PVDF published earlier [39] with the same notation:
v, and v asymmetric and symmetric stretching vibrations, respectively, )—bending
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Fig. 3 Raman spectra in the fingerprint wavenumber range for PVDF sample in the form of powder
(solid line) and hot-pressed film (thick line)
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vibration, r—rocking vibration. At high wavenumbers one observe two overlapping
bands at 880 cm ™! originating from stretching vibrations v4(CF,) + v(CC) in the
phase I and phase III and at 874 cm ™' related to a combination of stretching and
bending vibrations v{(CC) + d(CCC) in the phase II. The intensity of the band,
characteristic of the phases containing three and more T sequences, is lower than
that of the TG conformation for both samples. A strong band at 839 cm™', due to
r(CH,)+v,(CF,), is also present for the phase I and III whereas the r(CH,)
vibrations in the polar phase III are evident only as a shoulder. Very strong band at
797 cm~! is characteristic of the v,(CF,) vibrations in TGTG’ conformation. It
appears that Raman spectra of PVDF in the form of powder and hot-pressed film do
not differ considerably. The both samples contain all three polymorphous
modifications and from the intensity ratio of the band at 797 cm™' and the band
at 839 cm™ ' one can state that the hot-pressed sample is a little bit richer in the TG
conformation than the PVDF powder.

Dielectric measurements

Dielectric response of PVDF films was measured in the frequency range 100 Hz—
1 MHz using computer controlled HP-4284A LCR Meter. The samples with gold-
sputtered electrodes were placed in an Oxford Instruments Cryostat CF 1240,
whereas the temperature was changed from 150 to 450 K at a rate of 1 K/min. The
real and imaginary parts of the dielectric permittivity (¢* = ¢ — i&”) were obtained
as a function of frequency and temperature.

Mechanical measurements

The dynamic mechanical behaviour of PVDF rectangular hot-pressed films
(3-5 mm x 5 mm) was studied with NETZSCH DMA-242 using the tensile mode
in frequency range 1-25 Hz. The dynamic force was 1 N and the proportion factor
amounted to 1.2. The room temperature fatigue was assessed to be ~5% after 4 h.
The experiments were performed in the temperature range between 150 and 470 K
at a heating rate of 1 K/min and temperature variation of real and imaginary
components of the complex Young’s modulus (E* = E' — iE") was obtained.

Nuclear magnetic resonance

For the NMR experiment, polymer powder was stored in glass tubes, evacuated at
room temperature at ~4 x 107 hPa for 20 h to remove oxygen, and sealed under
vacuum. The proton spin—lattice relaxation (77) measurements were carried out on a
SXP 4/100 Bruker pulsed NMR spectrometer at a Larmor frequency of 90 MHz
between 200 and 440 K. The temperature of the sample was controlled by means of
a continuous nitrogen gas-flow system. An accuracy of the measured temperature
was 1.0 K. At least 30-min time was allowed to stabilize the temperature of the
samples. Spin-lattice relaxation time was determined by the inversion recovery
method using a 180°-t—90° pulse sequence. The recovery of the magnetization was
found to be exponential within experimental error at all temperatures.
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Results and discussion
Dielectric relaxation

The vacuum dipole moment of vinylidene fluoride unit pwypgy = 7.07 x 107°° Cm
originates from the distribution of positively charged protons and negatively
charged fluorine ions and lies in the plane of C—C bond (see Fig. 4). The dipoles are
attached to the main chain allowing a study of the dielectric response related to
segmental motions, local modes and reorientations leading from all-trans confor-
mation in the crystalline state to TGTG' and TTTGTTTG’ conformations.
Normalized dielectric relaxation function can be expressed as:
() — exo .
=0 (o), (1)
where ¢, and ¢ denote the non-relaxed and completely relaxed permittivity value,
respectively.
The relaxation function ®*(w) of polymeric systems can be satisfactorily
described by the Havriliak—Negami (HN) empirical equation [34, 35], which
assumes a distribution of correlation times in the system and also the correlation of

the motion, and is defined by:
N 1
() = . ()

[1 + (i(UTHN)x]

For the imaginary part of the permittivity it can be rewritten as:

o) _ sin | f arctan sin (%)
B — € [ﬂ ' ((wTHN)_“rCOS(%))]
x {1 + 2(erN)“cos(a7n) + (CUTHN)N} 7[}/27 (3)

where o (0 <o < 1) and f (0 <aff < 1) are two parameters characterizing the
symmetric and asymmetric broadening of the dielectric band, respectively and tyn
is a characteristic time of the relaxation process. It should be noticed that the Eq. 1
leads to a simple Debye law for « = f# = 1 and to the Cole—Cole [40] for f§ = 1 and
Davidson—Cole [41] function for « = 1.

Dielectric response in the low-temperature range, shown in Fig. 5a, is
characteristic of segmental motion, i.e., freezing of dipolar motions in the
amorphous phase of the semicrystalline polymer. The response is similar to that

Fig. 4 Schematic drawing
of the spatial dipole moment
arrangement of vinylidene
fluoride (VDF) unit
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Fig. 5 a Temperature dependence of real and imaginary part of the dielectric permittivity of radially
oriented PVDF at various frequencies. b Normalized imaginary part of the dielectric permittivity at 240
(filled square), 250 (star) 260 (open square), 270 (inverted triangle), 280 (open circle) and 290 K
(diamond). The solid lines represent the HN fit with o = 0.56 and = 0.36

reported earlier for PVDF [10, 15]. The dielectric dispersion shows cusp-like
temperature dependence, whereas the dielectric absorption increases with temper-
ature and the maxima shift towards higher temperature with increasing frequency.
The results obtained for normalized imaginary part of the permittivity &”(w)/e” nax at
different temperatures are shown in Fig. 5b. It is clearly visible only at 260 K the
loss curve is well defined in the whole measuring frequency window. Therefore, the
fitting procedure of Eqgs. 1-3 was performed in the following way: first we have
determined « and f parameters at 7 = 260 K and than we have adopted the
obtained values for the other temperatures. The solid lines in Fig. 5b show the best
least-squares fit to HN equation with o = 0.56 and f = 0.36. The agreement
between experimental and calculated curves is satisfactory. The temperature
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behaviour of the dielectric relaxation time tyy determined from the above fitting
procedure will be discussed below and combined with that of the mechanical and
NMR relaxation times, characteristic of the same process.

Mechanical relaxation

Figure 6 shows mechanical response of PVDF in the temperature range of the
segmental motions. Similar temperature variation of piezoelectric and electrostric-
tive response as well as mechanical storage and loss moduli were reported in PVDF
earlier [14, 19, 42, 43] but here we measured both mechanical and dielectric
response using the same hot-pressed PVDF films with well-defined degree of
crystallinity and polymorphs content.

The frequency range of our dynamic mechanical measurements in PVDF
polymer was not broad enough to define the whole mechanical loss modulus curve.
As the E”(w, T) response determines the relaxation frequencies w and the relaxation
time tyny ~ 1/ we used the mechanical response in the temperature regime
(Fig. 6) to calculate the characteristic time tyn values from the maximum of the
absorption curves E”(T). It should also be noticed that in the glass transition range,
the behaviour of the mechanical loss modulus E” (Fig. 6) is similar to that of
dielectric losses ¢’ (Fig. 5a), i.e., they increase with increasing frequency.

Nuclear magnetic resonance

Proton spin-lattice relaxation time 7 versus inverse of temperature for PVDF
powder, plotted in a logarithmic scale, is shown in Fig. 7. The data display a single,
quite broad and asymmetric minimum of 0.157 s at 329.9 K, related to segmental
motion in the amorphous phase. The uncertainty of the measurements is about + 8%
and is represented by the size of the symbols. Above 430 K a sudden decrease in
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Fig. 6 Real and imaginary part of the complex dynamical modulus at various frequencies
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Fig. 7 'H spin-lattice relaxation time versus reciprocal temperature in PVDF polymer at the Larmor
frequency of 90.00 MHz. Solid line represents the best theoretical fit of the HN function with o = 0.59
and f§ = 0.35

T, vs 1000/T was observed (not shown in Fig. 7). This change is attributed to the
melting process in polymer and its value is in a good agreement with the
corresponding melting temperature (see Fig. 1).

A qualitative analysis of the spin—lattice relaxation behaviour was based on the
assumption that temperature dependence of 7, as governed by the dipolar
interaction modulated by the motional process, can be written as a linear
combination of spectral densities J(wy) [44]:

7= Cllon) + 4720 @)
where wp denotes Larmor frequency and C is a constant related to the fraction of the
second moment, which corresponds to the dipolar interaction averaged by the
motional process under consideration. The spectral density J(w) can be expressed
in terms of motional correlation times by means of equations depending on the
theoretical or semiempirical model chosen to describe the molecular dynamics. In
our case, the spectral density is based on Havriliak—-Negami relaxation function [35]
and is defined by [45]:

(wtaN)” sin (%)
1+ (wthn)” cos (%)

2
J = —s5i t
(o) > sin | f§ arctan

2 on b2
X |1+ (otan)™ + 2(waN)” cos (7)] . (35)

For the systems, which deviate most strongly from Arrhenius behaviour, the
temperature dependence of a correlation time Ty can be analyzed using the Vogel—
Tamman—Fulcher (VTF) formula [36-38]:
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= 7o exp (L) (6)

T — Tvtr

where 7, is the relaxation time in the limit of high temperature, B is related to the apparent
activation energy (B = {Ea(l — Tvrr/ T)z} /R), and Tyrr is the empirical Vogel—

Tamman—Fulcher temperature, which is usually 50 K lower than the glass transition
temperature T, below which the segmental motion of the main chain is completely
absent. The dynamic glass transition temperature (T]gDRS) can be calculated [46]:

B
TR = Tp = ———+ T 7
o ef ln(l/ro)Jr VTF (7)
where T, is defined as the temperature at which the segmental relaxation time is 1 s
(Tmax = 1 9).

The fragility, F which is a measure of the ability of a material to change its
conformation across the glass transition region [47], can be calculated from the VTF

fitting parameters using [48]:

o B/Tref
In(10)(1 — Tyr/Twet)*
Larger fragility has been correlated with stronger intermolecular coupling or
larger segmental size [48, 49].

Formalism mathematically equivalent to the VTF equation and also often used to
characterize polymeric systems is the Williams—Landel-Ferry (WLF) equation [7]:

log ajg[tan(T)] = % Y

(8)

where C; and C, are constants and 7* is a reference temperature.

When the measurement range includes the glass transition temperature T,,
obtained from calorimetry or dilatometry, it appears natural to choose T, as T*. If T,
was defined in a consistent way by measurement of thermal or volumetric changes
at fixed scan rate Q, usually 1 K/min, then the parameters C; and C, appeared to
have universal values of 17.4 and 51.6 K, respectively [46]. C; and C, are related to
the VTF parameters (if 7T, is used as a reference temperature) through the relations
C, =T, — Tyrr and C; = B/(2.303C)).

To analyzed the NMR relaxation data Eq. 4 after inserting Eqgs. 5 and 6 was used
to fit the experimental data on Fig. 7, in the temperature range from 272 to 430 K.
The best fit was judged as that with the lowest y* value. The solid line in Fig. 7
represents the best result of this routine with o = 0.59 and § = 0.35. These values
are close to those obtained from the dielectric measurements above and the
agreement between experimental and calculated curves is acceptable. The values of
the characteristic time tyy (7) in the temperature range covered experimentally can
be determined for a given set of & and f§ parameters, using Eqs. 4-6.

The temperature dependence of characteristic relaxation time tyy, obtained from
dielectric and NMR spectroscopy experiments together with mechanical relaxation
data is shown in Fig. 8.
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Fig. 8 Temperature dependence of the HN relaxation times for the a-process of PVDF obtained by
mechanical (triangle), dielectric (star) and NMR (circle) measurements. The solid line corresponds to the
Vogel-Tamman-Fulcher fit defined by Eq. 6

Table 1 Vogel-Tamman—Fulcher parameters for the a-relaxation process

Sample 7o (8) B (K) Tyrr (K) TS (K)* P

PVDF 123 x 10712 1388 182 232 55

# Defined by Eq. 7
® Calculated using Eq. 8

It is visible that the values of tyy (7) obtained by different relaxation
experimental techniques show the same, non-Arrhenius temperature behaviour and
are of similar magnitude. Therefore, the temperature behaviour of the relaxation
times from dielectric, mechanical and NMR can be parameterized by one Vogel—-
Tamman—Fulcher law (Eq. 6). The fitted values of t,, B and Ty are listed in
Table 1 along with the calculated T, and F values. As can be seen in the Fig. 8
(solid line), the VTF law fits very well the temperature dependence of the
correlation time Ty of the macroscopic a-relaxation. The small deviation of the
correlation times (triangles) obtained from the mechanical relaxation is due to the
different method of the calculation tyy in relation to those acquired from dielectric
and nuclear magnetic relaxations.

As seen from Table 1, the temperature Tyrg is 51 K lower than the glass
transition temperature T,. In addition the calorimetrical 7, [50] and the calculated
dynamic glass transition Tlg)RS values are consistent.

From the equivalent Williams-Landel-Ferry equation (Eq.9) we obtained
C; = 122 and C, = 56 K. Though these values are not very adjacent to the so called
“universal” ones (C, = 17.5 and C, = 52 K, respectively) they are still, however,
within the range of numbers commonly available for various polymers [9, 26].

Compatible values of o and f§ parameters of the Havriliak-Negami equation have
been determined from the fitting procedure of the dielectric (« = 0.56, = 0.36)
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and NMR (x = 0.59, f = 0.35) data. These values indicate that the segmental
main-chain motion are intermediate correlated (¢ ~ 0.57) and strongly distributed
(aff = 0.21). The value of C constant (Eq. 4) amounts to 1.86 x 10° s72, and is of
the expected order of magnitude.

Conclusion

We have shown that the combined dielectric, nuclear proton and mechanical
relaxation measurements, performed over a wide temperature and frequency range
on PVDF polymer, are a powerful tools for the characterization of molecular
dynamics and the o-relaxation in such complex systems.

Havriliak—Negami empirical equation was used to analyze the relaxation data
and the obtained results show that the dynamics of segmental motion can be well
described by the same HN parameters (¢ ~ 0.57 and =~ 0.35) in a wide time
range. This indicates that the correlations between local conformational transitions
in the amorphous phase of PVDF are intermediate and characterized by a
pronounced distribution of the correlation times. As PVDF is a semicrystalline
polymer it is not possible to determine directly “stretching” of the exponential
behaviour, therefore we characterized the temperature dependence of the relaxation
times. The temperature variation of the characteristic times Ty, deduced from our
analysis, deviates from the Arrhenius behaviour and can be described by Vogel-
Tamman—Fulcher, or equivalent Williams—Landel-Ferry equations. The values of
Ty~ (7) determined by different relaxation experimental techniques consistently fit
to Vogel-Tamman—Fulcher law with the same values of 75 = 1.23 x 10712 S,
B = 1388 K and Tytr = 182 K in the whole temperature range.
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